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Abstract 

The equations of the spherical-wave dynamical 
diffraction theory for finite polyhedral crystals [Saka, 
Katagawa & Kato (1972). Acta Cryst. A28, 102-113, 
113-120] that relate to the Borrmann-Lehmann inter- 
ference effect have been cast into simple forms in 
order to display explicitly the leading periodicities 
and thereby facilitate comparison with experimental 
observations. The evolution of fringe profiles during 
passage from the low-absorption case to that of high 
absorption accompanied by strong anomalous trans- 
mission is discussed in detail and illustrated with 
series of computed profiles. Representative topograph 
patterns are compared with simulated images and 
exemplify the poor agreement between observed and 
calculated fringe spacings previously reported [Lang, 
Kowalski, Makepeace & Moore (1986). Acta Cryst. 
A42, 501-510]. The effect of lattice distortion in 
Borrmann-Lehmann interference is investigated by 
applying the ray-optical diffraction theory for mildly 
distorted crystals developed by Kato [J. Phys. Soc. 
Jpn (1963), 18, 1785-1791; (1964), 19, 67-77, 971- 
985] with assumption of a constant strain gradient in 
the specimen. Two factors have been identified that 
can account for the apparent extreme sensitivity of 
Borrmann-Lehmann fringe spacings to lattice distor- 
tions. One factor arises as a geometrical consequence 
of the curvature of ray trajectories in the distorted 
crystals, the other derives from Kato's 'potential' term 
in the phase integrals of the crystal waves that recom- 
bine and interfere. Both factors depend upon the first 
power of the strain gradient. Under typical experi- 
mental conditions, strain gradients sufficiently 
small as to produce less than 1% contraction in 
Pendellrsung fringe spacings can change Borrmann- 
Lehmann fringe spacings by more than a factor of two. 

I. Introduction 

Borrmann-Lehmann interference fringes, like the 
better known Pendellrsung fringes, are predicted by 
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the dynamical theory of diffraction and may be 
observed on X-ray topographs of perfect and nearly 
perfect crystals bounded by appropriately oriented 
plane facets. In one respect the domain of Borrmann- 
Lehmann interference phenomena extends beyond 
that of Pendellrsung interference because the 
Borrmann-Lehmann fringe pattern persists with 
undiminished visibility into the regime of high 
absorption, when accompanied by anomalous trans- 
mission, whereas under these conditions Pendel- 
16sung-fringe visibility fades away. Early publications 
of Borrmann-Lehmann fringe patterns exhibited the 
high-absorption regime, and the observations could 
be accounted for adequately by a simple dynamical- 
theoretical treatment involving only the anomalously 
transmitted waves belonging to branch (1) of the 
dispersion surface (Borrmann & Lehmann, 1963; 
Lehmann & Borrmann, 1967). Subsequently it was 
pointed out by Saka, Katagawa & Kato (1972a, b) 
that the 'Laue-Bragg' diffraction geometry under 
which Borrmann-Lehmann fringes had been gener- 
ated was just the simplest member of a family of 
geometries involving Laue-case boundary conditions 
at the X-ray entrance surface followed by internal 
reflection at surfaces presenting Bragg-case boundary 
conditions. All such geometries (in conditions of both 
high and low absorption) fell within the embrace of 
these authors' theory of diffraction by finite poly- 
hedral crystals, which was in turn based upon the 
spherical-wave dynamical theory of X-ray diffraction 
(Kato, 1961a, b, 1968). 

Observations of Borrmann-Lehmann fringes under 
conditions of moderately law absorption (/Zot = 1.6) 
using polished parallelepiped specimens of diamond 
and Cu Kal radiation (recorded a decade ago, Mai 
& Lang, unpublished) yielded regular fringe patterns 
of good visibility [a few of which are reproduced in 
Mai & Zhao (1989)]. In more recent work synchrotron 
radiation has been employed (Lang, Kowalski, 
Makepeace & Moore, 1986). In the latter experiments, 
observations were extended to the case of quite low 
absorption (/z0t =0.47), and patterns were recorded 
with either o--mode or 7r-mode polarizations alone. 
Use of a single polarization mode facilitated com- 
parison between calculated and observed fringe 
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spacings. Large discrepancies were found (see Table 
1 of Lang, Kowalski, Makepeace & Moore, 1986), 
which were surprising in view of the high perfection 
of the diamond specimen used as indicated by the 
regularity of its Pendell6sung fringe patterns and good 
agreement between calculated and observed Pendel- 
16sung period. From such observations arose a major 
aim of the present work, to investigate factors that 
may cause spacings of Borrmann-Lehmann fringes 
to be significantly more sensitive than Pendell6sung 
fringe spacings to perturbation by long-range lattice 
distortions. This subject is introduced after reporting 
two prior studies. The first concerns computer simula- 
tion of topographs of Borrmann-Lehmann fringe 
patterns. The second deals with changes of the per- 
feet-crystal Borrmann-Lehmann fringe pattern with 
variation of experimental parameters, and is par- 
ticularly concerned with the pattern evolution in 
passing from low-absorption to high-absorption 
conditions. Changes in the perfect-crystal patterns 
are illustrated by computed fringe profiles relevant 
to both previous and likely future experiments with 
synchrotron radiation. 

2. Diffraction geometry 

Saka, Katagawa & Kato (1972a) provided a 
classification and terminology applicable within the 
family of diffraction geometries that includes the 
configuration leading to Borrmann-Lehmann inter- 
ference; and additional descriptions, relevant to the 
present study, appear in Lang et al. (1986). In all 
experiments performed by the latter authors, valuable 
simplification of the diffraction geometry was gained 
by using rectangular parallelepiped specimens with 
symmetrical Laue-case diffraction conditions at the 
X-ray entrance surface. Figs. l (a)  and (b) illustrate 
the two arrangements employed with such specimens 
when observing Borrmann-Lehmann fringe patterns 
in the diffracted-beam topograph image. The basic 
experimental set up was the same as that for taking 
section topographs with a conventional (Lang, 1957) 
or synchrotron X-ray source (Lang, 1983). The 
incident ribbon X-ray beam is limited to a spatial 
width of about 15 ~m by the slit S before entering 
the specimen at the chosen angle. Within the speci- 
men, Bragg diffraction gives rise to crystal waves 
linked by kg = k0+27rg, where Igl is the reciprocal of 
the interplanar spacing. To sufficient accuracy for 
present purposes, the directions of ko and kg c a n  be 
taken as those of the incident, K0, and diffracted, Kg, 
wave vectors outside the crystal, respectively. To 
obtain Borrmann-Lehmann interference the parallel- 
epiped specimen is translated with respect to S so 
that the lateral face FE cuts into the 'energy-flow 
triangle' ORT. Then Bloch waves excited at O can 
reach the point W on the X-ray exit surface EB by 
two paths, either directly along OW or by the path 

OQ + QW with internal reflection at Q. Interference 
between rays following these two paths generates the 
Borrmann-Lehmann fringes. To find the distance 
along EB within which rays OW and OQ+ Q w  over- 
lap, the 'image' energy-flow triangle O'R'T '  is con- 
structed, with O'R' parallel to OR and O'T'  parallel 
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Fig. 1. Plan view on the plane of incidence showing arrangements 
for recording Borrmann-Lehmann fringes in the diffracted beam 
(Kg beam). Specimen crystal parailelepiped shaped with faces 
AF, FE and EB normal to the plane of incidence. The Bragg 
planes diffracting are parallel to FE. Specimen thickness FE = 
1 mm. Slit S parallel to edges F and E produces a narrow ribbon 
X-ray beam impinging at O. (X-ray source distance from S 
typically 0.5 m with conventional X-ray tube and 80m with 
synchrotron-storage-ring source.) In the triangles ORT and 
O'R'T' ,  OR and O'R' are parallel to Vg, and OT and OT' are 
parallel to Ko. The mid-points of R T  and R'T '  are L and L', 
respectively. Distances FO= FO'--a,  E W = b .  Perpendicular 
distances from W to OT and OR are xo = WM and x~ = W N  
respectively, and to O'T'  and O'R' are x~ = WM' and x~ = WN'  
respectively. Borrmann-Lehmann fringes are recorded on photo- 
graphic plate P within the domain LL+ LBL. Experimental 
settings: (a) 'type I', 'negative'; (b) 'type IF "positive'. 
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to OT. When the Bragg planes and F E  are both 
exactly perpendicular to AF,  the apex O' lies on A F  
prolonged, with O ' F =  FO. The important experi- 
mentally variable parameter is the distance FO = a. 
Then with specimen thickness FE = t and Bragg angle 
0B the range of possible Borrmann-Lehmann interfer- 
ence on E B  is evidently E T '  in Fig. l (a)  and E R '  in 
Fig. l(b), and is equal to (t tan 0B-a) .  

In accord with the definitions of Saka et al. (1972a), 
rays issuing from the crystal surfaces FE or E B  after 
following a direct path from O are described as 
undergoing 'Laue-Laue' diffraction, and those after 
taking the internally reflected path O Q + Q W  as 
undergoing 'Laue-Bragg-Laue' diffraction. Thus on 
plate P Borrmann-Lehmann fringes can be expected 
in the range designated L L + L B L  in Fig. 1, i.e. 
in the range of overlap of Laue-Laue (LL)  and 
Laue-Bragg-Laue ( L B L )  diffracted rays. Note the 
difference between the patterns recorded in the 
arrangement of Figs. l (a)  and (b). In the latter case 
the image contains only the segment LL  due to rays 
leaving the crystal between R and R' plus the segment 
L L +  L B L  due to rays issuing between R' and E. In 
Fig. l (a)  plate P also receives Kg waves partially 
transmitted through the edge FE between P and E. 
These latter Laue-Laue-case waves produce the 
image segment distinguished as LL'.  The situation in 
Fig. l(a) ,  where the lateral face FE cuts the Kg ray 
through O, is termed 'type I' Laue-Bragg diffraction 
by Saka et al. (1972a) and 'negative case' Laue-Bragg 
diffraction by Lang et al. (1986), with the correspond- 
ing terms for the Fig. l(b) geometry, where FE cuts 
the Ko ray through O, termed 'type II' and 'positive 
case', respectively. Lang et al. commend their ter- 
minology for a certain mnemonic advantage: in the 
'positive case' g.  As is positive, where As is the change 
in Poynting vector of the crystal waves on internal 
reflection at FE. 

Fig. 1 shows only the experimental arrangement 
for recording the Kg-beam image. In fact, with the 
relatively large Bragg angles usually employed when 
observing Borrmann-Lehmann patterns, it is possible 
to obtain complete spatial separation of the full 
widths of diffracted and transmitted beams without 
requiring specimen-to-plate distances of more than a 
few centimetres. Thus the K0-beam and Kg-beam 
images can be recorded simultaneously. The experi- 
mental arrangements for so doing are explained in 
Fig. 1 of Lang et al. (1986), and both Ko-beam and 
Kg-beam Borrmann-Lehmann fringe patterns are 
exhibited in that paper. 

3. Theory for perfect crystals 

All needed expressions for wave amplitudes on the 
X-ray exit surfaces of the specimen have been derived 
by Kato and co-workers through development of the 
spherical-wave dynamical diffraction theory for per- 

fect crystals. The following treatment proceeds from 
their equations. Attention will be restricted to the 
diffracted wave (G wave), and diffraction in a single 
polarization mode will be implicit in most discussion 
of fringe visibility etc. To introduce the notation, 
consider first the amplitude of the G wave, dg(r), at 
points within the energy-flow triangle O R T  in the 
absence of reflections from lateral surfaces. Spherical- 
wave theory gives dg(r) as 

dg(r) = /3Jo(p ), (1) 

after eliminating some constant phase and amplitude 
factors from the expressions of Kato [1968, equation 
(34); 1974, equation (4-205b)]. Here/3 is proportional 
to the strength of the reflection [Saka et al., 1972a, 
equation (9); Kato, 1974, equation (4-55c)] and p =/3 
(XoXg) ~/2. The coordinates x0 and xg are the perpen- 
dicular distances of the point r from the K0 and K, 
edges of the energy-flow triangle ORT,  respectively 
(see Fig. 1). With symmetrical-Laue-case conditions 
at the X-ray entrance surface, equivalent expressions 
for/3 are 

and 

/3 = KC(XgX-g ) ' / 2 / s in  20B (2a) 

/3 = rr/£g sin 0B. (2b) 

In equation (2a), K =27r/A, C is the polarization 
factor and Xg is the gth Fourier coefficient of the 
polarizability of the crystal for X-rays. In (2b), SCg 
is the extinction distance, i.e. Pendelli~sung period 
parallel to the Bragg planes. If the crystal is absorbing, 
/3 and ~:g~ are complex. The relation between the real 
part of sCg ~ and the real part of the structure factor 
Fg is ~gl=(e2/mc2)[Fg]CA/TrV cos OB, V being the 
volume of the unit cell. 

When the triangle O R T  is cut by the lateral surface 
FE, imposition of the surface boundary conditions 
on the Poynting vector of the crystal waves requires 
that either the G wave or the 0 wave be totally 
reflected at the surface. In Fig. l (a)  the 0 wave is 
totally reflected, and in Fig. l(b) the G wave. In their 
spherical-wave analysis, Saka et al. show that the 
crystal wave field resulting from such reflection is 
identical to that obtained with addition of a second 
energy-flow triangle, subtended from a virtual entry 
point O'. The simple construction locating O' in Fig. 
1 follows from the particularly simple diffraction 
geometry under present consideration. The image 
received on the plate P is the projection along Kg of 
the intensity distribution over the exit surface that is 
the resultant of G waves belonging to the two triangles 
O R T  and O ' R ' T ' .  From the expressions for G-wave 
amplitudes over E T  in the positive case, type II, and 
over PE and E T  in the negative case, type I, the 
component amplitudes, Dg, in the several image 
domains identified on P in Fig. 1 can be expressed 
in the following simplified forms, after eliminating 
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the multiplying factor /3 common to all. For the 
positive case, type II, the amplitudes are 

D~ z'= Jo(P)= Jo[fl(XoXg)l/2], (3a) 

and 
1-)LBL t t 1/2 

= =-Jo[3(XoX~) ], ~g -Jo(P') (3b) 

giving in the domain of the Borrmann-Lehmann 
interference pattern simply 

DLL+LBL Jo(P) Jo(P'). (3c) g - - "  _ _  

In the negative case, type I, the same expression for 
D Lz" applies, but 

f f t DLBL=(Xo/Xg)J2( p ), (4a) ~ g  

so that 

DLL+Z'BL=Jo(p)+(X'O/Xg)J2(p' ). (4b) g 

The amplitude in the domain LL' is 

DLgL'=Jo(~)+(Eg/~o)J2( 6). (4c) 

In the above, coordinates and parameters relating to 
the triangle O'R'T '  are primed, and xo, xg, X'o and x~ 
are the coordinates of points on the s ~?'ace EB. In 
the expression for D~ L', an ov, rbar d;,dnguishes 
values on PE. Sources of these equatio,~s ere: (3b) 
from Saka et al. (1972a), equation (52b); Ka'o (1974), 
equation (4-244b); (4a) from Saka et aL 1972a), 
equation (50b); Kato (1974), equation (241b); ~:nd 
(4c) from Kato (1974), equation (4-242a). 

Under all experimental conditions employed to 
date, the arguments p, p' and f~ are large. Hence 
asymptotic forms of the Bessel functions may be used. 
In the non-absorbing limit the equations above 
further simplify, and after elimination of common 
factors become, for the positive case, type II, 

D L L = ( X O X g )  -1 /4  cos ( p -  rr/4), (5a) 

and 

giving 

D L B L  (...I ~r  h - l /4  p t  g =-~-,o--gJ cos ( ~/4),  (5b) 

D L L + L B L  ~-. g (XOXg) -1 /4  COS ( p -  7r/4) 

- - (XtOXg)  -1 /4  COS ( p ' - -  7 r /4 ) .  (5C) 

In the negative case, type I, equations (4a) and (4c) 
reduce to 

! t [ ~ , . t v . t  ~--1/4 I")LBL=--(Xo/Xg)\ . ,~ ,O. ,~g ! cos ( p ' -  ~r/4) (6a) - - g  

and 

D~L'=(Eo2g)-~/4(1-Eg/2o) COS (~-Tr/4) ,  (6b) 

producing, in the Borrmann-Lehmann interference 
domain, 
D LL+ LBL g =(XoXg) -1/4 cos ( p -  7r/4) 

-(X'o/X'g)(X'oX'g) -1/4cos (p ' - z r /4 ) .  (6c) 

Equations (5c) and (6c) make it obvious that for each 
polarization mode four-wave interference occurs in 
the L L + L B L  domain, the resultant of coherent 
superposition of the two-wave Pendellrsung interfer- 
ence systems proper to both ORT and O'R'T' .  Com- 
parison of the expressions for _gr) u-+'~L in (5c) and 
(6c) shows why it is preferred experimentally to 
record Borrmann-Lehmann fringes in the positive 
case, type II setting, since in (5c) the terms in p and 
p' have more equal weighting. At E, XoXg = x~x'g; also, 
(XoXg) -1/4 and (X'oX'g) -1/4 are slowly varying over ER' 

r,,,,-, ~-1/4 rises sharply. Hence except near R' where ~--o-~gJ 
there will be little error over most of ER' in 
approximating (5c) by 

D L L + L B L  "cos (p- 'n ' /4 ) -cos (p'-Tr/4),  (7) 

yielding the intensity distribution (for each polariz- 
ation mode) 

LL+ LBL 2 ~ P t Dg I -4sin2½(p + - zr /2)  sin2½(P-P') • 
(8) 

For comparison with this zero-absorption expression, 
consider the case of very high absorption with strong 
anomalous transmission. In the expansion 

Jo( p )°c (XoXg)-'/4[exp i( p - 7r/4) + exp -  i( p - rr/4)] 

the positive and negative exponents represent respec- 
tively the branch (1) and branch (2) waves, here 
adopting the exponent sign convention exp i[k. r -  
tot) for a progressive wave, as done by Kato. Only 
the branch (1) wave need now be considered, so that 
(7) transforms to 

DLL+L~L=exp (-iTr/4)[exp ( i p ) - e x p  (ip')] (9) g 

which yields the intensity distribution 
i LL+ LBL 2 ~ Dg I -4s in2½(p p'). (10) 

Equation (10) is just the expression for Borr- 
mann-Lehmann fringes that comes out of simple 
wave-vector-difference calculations from dispersion- 
surface geometry in the high-absorption case 
(Borrmann & Lehmann, 1963; Lehmann & Borrmann, 
1967; Lang et al., 1986). Analysis of situations inter- 
mediate between the extremes of (8) and (10) is 
pmsued later, in § 5. 

For comparing observations with theory it is con- 
venient to replace the coordinates Xo etc. of the point 
W distant b from E by the parameters o- and o-' 
(Kato, 1968) defined by o-=LW/LR and o-'= 
L'W'/L'R'. When symmetrical Laue conditions apply 
at entrance and exit surfaces, Xo=t ( l+o ' ) s in  0n 
and Xg = t(1 - t r )  sin 0B, giving 

(XoXg) 1/2 = t(1 - o'2) 1/2 sin 0B, 

' and tr'. with corresponding relations between x6, Xg 
Also resulting from the simple geometry assumed 
is the identity of cr with the important energy-flow 
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parameter p = tan O/tan 0n, in which O is the angle 
between Poynting vector and Bragg plane. Consider 
first the predictions of fringe position in the high- 
absorption case (10), when various levels of 
approximation are allowed in expanding (p -p ' ) .  
Substitution of p -- tr, p ' =  o-' and use of (2b) gives 

P - p ' =  crt~gl[(1-p2)l/2-(1-p'2)l/2], ( l l a )  

which becomes 

p -- p ' =  "rrt~g 1{[ 1 - (PE - B)2 ] ' /2 - [  1 - ( p ~  + B)2] '/2} 

( l lb )  

upon introducing PE = a~ t tan 0n and B = b~ t tan 0n. 
Substitution of the abbreviations 

g -- [ 1 - (PE - B)2] 1/2 

and R' = [ 1 -  (pc + B)2] 1/2, and differentiation of 
their difference with respect to B gives 

O(R - g ' ) /dB  = 2pc (12a) 

under the approximation that (pE+B)  2 can be 
neglected relative to unity. With retention of p2 and 
B 2, (12a) becomes 

d ( R - g ' ) / d B  

=2pe(1--p2)-l/2[l+lB2(1--pZE)-l]. (12b) 

Let A,, denote the Borrmann-Lehmann fringe 
spacing at W. Then the increment AB = A,,/t tan 0n 
corresponds to the increment A ( p - p ' )  = 27r in (10). 
Combination of (11b) and (12a) thus gives 

A~=~g(t/a)tan 2 0n, (13) 

recognizable as the simple formula for fringe spacing 
in the high-absorption case when both a and b are 
small compared with t tan 0n [Borrmann & Lehmann, 
1963; Lang et al., 1986, equation (5a)]. Corrections 
that can be applied to (13) when a and/or  b are not 
small compared with t tan 0n follow from (12b). 

4. Experiment and simulation 

Computations of fringe profiles needed for simula- 
tions were made without approximations in (3) and 
(4) other than replacement of Bessel functions by 
their asymptotic expansions and the usual assumption 
that the ratio of imaginary to real part of the polariz- 
ability is very small. Anomalous absorption is handled 
conventionally, as follows. The effective absorption 
factor for a ray reaching EB from O along direction 
p is 

exp {(-/Xot sec On)[1 + C exp ( - M ) e ( 1  _p2),/2]}, 

in which/Xo is the normal linear absorption coefficient, 
exp ( - 2 M )  is the Debye-Waller factor for intensities, 
and e is the ratio ~ Xg/Xo, i.e. the ratio of the imaginary 
parts of the polarizability for orders g and 0. The 
positive and negative signs apply to branch (2) 

and branch (1) waves respectively. The factor 
exp (-/Zot sec 0B) uniformly attenuates all rays, and 
can be eliminated. Hence in the formal replacement 
of/9 by Pr--ipi to take account of absorption, only 
the anomalous component need be included in pi. 
This is conveniently done by introducing the 
imaginary part of the extinction distance, which is 
given by (27ring) = C exp (-M)etzot sec On. Retain- 
ing ¢g to denote the real part of the extinction dist- 
ance, the real and imaginary parts of p are thus 

pr = 7rt(1--p2)l/2/~g (14a) 

and 

p, = 7rt(1 _p2)1/2/¢g (14b) 

with corresponding relations involving p'r, p~ and p'. 
To illustrate application of (14a) and (14b), consider 
(5a), which for complex p becomes 

L L  Dg = (1 - -p2 ) - l / 4 [COS (Or-  7r/4) cosh Pi 

+ i sin (Or-  7r/4) sinh p~], (15) 

and yields the intensity distribution 

IDgLLI2 = (1 - p2)-'/2{cos2 [ 7rt(1 _p2),/2/SCg _ 7r/4] 

+ sinh 2 [ zrt(1 - p2)~/2/~:~]}. (16) 

Equation (16) recognizably gives the intensity profile 
across a section topograph of an absorbing perfect 
crystal in the symmetrical Laue case (omitting con- 
stant factors), expressed as a function of p. Intensity 
profiles of Borrmann-Lehmann fringe patterns with 
any magnitude of anomalous absorption are derived 
straightforwardly. For example, in the type II (posi- 
tive) setting, (5c) gives for LL+LnL2 I Dg I = InL the 
equivalent expressions 

lnL= D ,  I + 1 1  , , 2  ~nL2 2 , ,  ,-n, , Dg I + Re[(Dg )(Dg ) ] 

(17a) 
o r  

InL = [Re ( D~ L + DgLnL )] 2 + [ Im ( DgLL + DgLBL )].2 

(17b) 

Using the link p '=p +2pE, plots of Inm VS p (or B) 
have been computed, inserting appropriate values of 
~:g and £g and of other parameters such as a that have 
been deliberately experimentally varied (Kowalski & 
Lang, 1987). 

Representative comparisons between experiment 
and simulation are shown in Figs. 2 and 3. The 
topographs illustrate differences between the type I 
(negative-setting) pattern, Fig. 2, and the type II 
(positive-setting) pattern, Fig. 3. Furthermore, the 
topograph in Fig. 2 was taken with Cu Kal radiation 
whereas that in Fig. 3 was obtained using synchrotron 
radiation, the Bragg angle being set so that radiation 
of wavelength 0.15 nm underwent the 220 reflection. 
Fig. 2(a) shows a 0-45 mm high segment of the image 
of a parallelepiped crystal whose edge E stood 5 mm 
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high normal to the plane of incidence. It reproduces 
part of Fig. 2 of Lang et al. (1986), wherein leading 
features of the pattern were described, including 
evidence of perturbations by lattice imperfections. 
Other points to note, relevant to the comparison with 
simulation, are as follows. Fig. l (a)  explains the 
geometry of Fig. 2(a); and the position of the image 
of E, coinciding with the left-hand limit of the 
Borrmann-Lehmann fringe domain, is immediately 
recognizable. Reference to Fig. l (a)  shows that the 
widths of the Borrmann-Lehmann fringe domain to 
the right of E and of the LL' domain to the left of 
E are identical. From (4a), (4b), (6a) and (6b), it is 
seen that the amplitude of rJLBL decreases monotoni- ~ g  

cally from E to T', the factor x~/x'g = (1 +p ' ) / (1  - p ' )  
falling to zero at T'  where p ' =  -1 .  Consequently, the 
(LL + LBL) pattern merges smoothly with the normal 
Pendellfsung (LL) pattern at the position on P corre- 
sponding to the image of T'. On the simulation this 
merging can be traced, but on the topograph the 
Borrmann-Lehmann fringe visibility vanishes closer 
to E. The maximum Pendellfsung fringe spacing on 
P just to the left of the image of E, in the LL' domain, 
is 11-5 ~m, and is less than the incident-beam width 
of about 15 I~m, which is determined principally by 
the opening of S. Consequently, individual Pendel- 
lfsung fringes in LL' are not resolved; but there can 
be recognized a periodic variation in the photographi- 
cally recorded intensity resulting from the superimpo- 

(a) 

sition of the Pendellfsung fringe patterns produced 
by the or- and zr-polarization modes (Hart & Lang, 
1965; Hattori, Kuriyama & Kato, 1965). 

The systems employed for computer simulation of 
the images, and for photography of the simulations, 
were essentially those previously developed for simu- 
lating section topograph patterns of crystals contain- 
ing stacking faults (Kowalski & Lang, 1986). The 
pixel sizes corresponded to a width of 1.25 la.m on 
the plate P in Fig. 2(b), and less in the case of Fig. 
3(b), and so were well below the minimum fringe 
spacing likely to be resolved experimentally. When 
dealing with unpolarized radiation, the or and 7r pat- 
terns were calculated separately, and added together 
in appropriate ratio in the display to be photo- 
graphed, thus correctly simulating the diffraction 
conditions, and producing the periodic fading of 
Pendellfsung fringe visibility seen in Fig. 2(b). Adopt- 
ing the structure-factor value F220=15.39 from 
Dawson (1967), the spacing on P of the leading 
Borrmann-Lehmann fringes, calculated for the high- 
absorption limit via (12b), and setting IPl=PE, is 
44.5 ~m for the dominant tr-polarization mode. In 
the topograph segment shown, the average fringe 
spacing of the few fringes clearly observed is roughly 
30% smaller. Elsewhere along the same crystal edge 
the spacing falls to less than half the calculated value, 

-, • ::2 

i 

(a) 

E T" 

(b) 

Fig. 2. Observed and simulated K~-beam section topographs show- 
ing Borrmann-Lehmann fringes in the type I (negative) setting 
(cf. Fig. la). Radiation Cu Ka I , 220-type reflection, 20B =75 °, 
crystal thickness t=lmm, p.ot=l.6, a=0.18mm, pc=0-23. 
Full width of section image is shown (1.25 mm on P). (a) 
Segment 0.45 mm high of topograph image. (b) Simulation 
of(a). 

• (b) 

Fig. 3. (a) Observed and (b) simulated K~-beam section topo- 
graphs showing Borrmann-Lehmann fringes in the type II (posi- 
tive) setting (cf. Fig. 1 b). Synchrotron radiation, tr-polarization 
mode, A=0.15nm, 220-type reflection, 20B=73 °, t=lmm, 
/~ot = 1"6, a = 0"44 mm, PE = 0"56. Height of image = 0-23 mm. 
The width of image reproduced is centred on p = 0, and spans 
the range -0.56-< p-< 0.56. Thus the left-hand limit is the image 
of edge E, and on the fight the LL domain between p = 0.56 
and p = 1 is excluded. Fringe spacings on P near image of edge 
E: (a) 9.4 i~m, (b) 14.7 i~m. 
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despite constancy of a and t. Regarding absorption, 
exp ( - M )  does not significantly differ from unity at 
room temperature in the case of diamond. The simula- 
tions Figs. 2(b) and 3(b) were computed assuming 
an ideally perfect diamond, free from static lattice 
disorder, and the value e = 0"96 was adopted for the 
220 reflection in this case. Under such conditions only 
minor perturbations of fringe positions and intensities 
from those produced in the high-absorption limit 
appear. 

A characteristic feature of type II (positive-setting) 
patterns, when absorption is low or moderate, is the 
pile up of intensity on approaching the ray O'R'  from 
within the triangle T'O'R' .  In the pattern reproduced 
in Fig. 3(a) [also shown, and used for structure-factor 
measurement, in Lang et al. (1986)], this intensity 
peak corresponding to the image of R' stands out 
very strongly. Its contrast appears all the greater by 
virtue of proximity to a pronounced intensity 
minimum lying about 501xm on its left. This 
minimum, and oscillations of mean intensity flanking 
it, are attributable to bending of ray trajectories 
caused by strain gradients in the specimen. Unfortu- 
nately, the distribution and magnitude of these 
gradients cannot be inferred directly from the 
intensity distribution on the image. In the syn- 
chrotron-radiation topograph the contrast of Pendel- 
liisung fringes in the LL domain vanishes near the 
right-hand edge of the pattern. Consequently, that 
uninteresting strip of image has been excluded from 
reproduction so as to allow greater enlargement of 
the Borrmann-Lehmann fringe pattern close to the 
left-hand edge. The part of the image included in 
Figs. 3(a) and (b) is symmetrical about p =0  and 
covers the range -PE -< P-< P~, with PE = 0.56 in this 
experiment. The fringe pattern exemplifies those 
obtained with a relatively high value of PE. Patterns 
can be classified according to whether or not a is 
greater than ET'  in Fig. l (a)  [or ER' in Fig. l(b)], 
i.e. whether or not PE is greater than 0.5. In Fig. 3(a), 
where a is greater, the central fringe of the normal 
Pendelliisung pattern is included in the LL domain. 
Parameters used in the simulation have been adjusted 
to produce a fair match with the Pendelliisung phase 
at p = 0 in the topograph. Such adjustment is permiss- 
ible since with high-order Pendelliisung interference 
( t / ~ g -  60 for h = 0.15 nm), uncertainties of less than 
1% in 0~, t or scg correspond to fringe shifts of a 
substantial fraction of an order. In the LL+ LBL 
domain the large-scale intensity oscillations referred 
to above warn that the crystal is not as free from 
strain gradients as the good visibility and regularity 
of the Borrmann-Lehmann fringe pattern might 
lead the observer to believe. Departure from ideal 
behaviour is revealed strikingly by the large difference 
between Borrmann-Lehmann fringe spacings seen in 
topograph and simulation, the ratio of calculated to 
observed spacings being as high as 1.6 in this example. 

5. Pattern evolution with changes of wavelength 
and absorption 

Plots of diffracted intensity vs the parameter p are 
informative for demonstrating variations of positions 
and intensity of individual fringes that occur under 
low absorption conditions, and for tracing the evol- 
ution of the fringe pattern towards the high-absorp- 
tion limit. Since the majority of experiments were 
performed in the type II (positive) setting, and in all 
synchrotron-radiation experiments only the Kg beam 
was recorded, these conditions have been assumed 
in the plots shown here. The synchrotron-radiation 
experiments on diamond with ;t = 0.1 nm exemplify 
low-absorption conditions. Complete section topo- 
graph intensity profiles computed from (16) and (17) 
are shown in Fig. 4. The choice PE = 0.3 represents 
typical experimental conditions. As already pointed 
out, small changes of a, t or 0B (and hence of A and 
¢g) will substantially change the Pendelliisung phase 
at p = PE. Figs. 4(a) - (d)  illustrate four epochs within 

(b) 

(e) 

-0.3 p 1.0 

Fig. 4. Computed complete section topograph intensity profiles 
containing Borrmann-Lehmann fringes, left, and normal Pendel- 
liisung fringes, right. Type II (positive) setting, cf. Fig. l(b). 
Abscissa range -0 .3  -< p -< 1.0, PE = 0"3. (Corresponding actual 
section image width on plate P when A = 0.1 nm and t = 1 mm 
is 0.52 mm.) Polarization or mode in all plots. Ordinates: relative 
intensity on linear scale. Abscissa ticks indicate positions of first 
11 Borrmann-Lehmann fringe maxima in high-absorption limit. 
(a)-(d) Absorption as in diamond, ~:~ = 18.3 mm; Pendell6sung 
phase t/~:~=34.0, 34.25, 34.5 and 34.75, respectively. (e) 

i _ _  Diamond absorption ×6, ~:g - 3.0 mm; t/~g --- 34.5. 



222 B O R R M A N N - L E H M A N N  I N T E R F E R E N C E  PATTERNS 

a cycle of unit increment in t~ Cg. The ticks along the 
abscissa axes show where Borrmann-Lehmann fringe 
maxima would appear in the high-absorption limit 
for the respective values of t/¢g. Fig. 4(e) repre- 
sents a hypothetical specimen possessing six times 
the absorption of diamond. [The term 'absorption' 
in the present context means the product 
Ce exp (-M)txotosec 0B.] Observe that whereas 
absorption reduces the visibility of the normal Pendel- 
16sung fringe pattern in the LL domain, the visibility 
of the Borrmann-Lehmann fringes remains unim- 
paired in most of their domain. The specimen used 
was known to contain imperfections in the form of 
point defects and submicroscopic platelets on {100}, 
and evidence from double-crystal difractometric 
measurement of the angular width of the 220 reflec- 
tion (publication in preparation) indicated the value 
e = 0.7, which was that adopted in the computations. 

(b) 

(c) 

Z/l 
(d) 

(e) 

- 0 " 2 5  p 0"45  

Fig. 5. The 'sum" and 'difference' intensity functions whose product 
forms the zero-absorption Borrmann-Lehmann fringe pattern 
in the type II (positive) setting, under the approximation 
( 1 - p 2 ) = ( 1 - p ' 2 ) =  1. In all plots pE =0.25, and the abscissa 
range is -0.25<-p<-0.45. (a),  I - ,  t/~:g=60. Ticks show posi- 
tions of Borrmann-Lehmann fringe maxima in the high-absorp- 
tion limit. (b)-(e) I ÷, with values of p~ and p'~ at E being 
respectively 57.75zr, 58.0~, 58-25rr and 58.57r (corresponding 
to t/~:g =60  at p =0).  

Borrmann-Lehmann fringe patterns produced 
with the longer wavelength, 0.15 nm, and consequent 
increase of t/~g to about 60 with the 1 mm thick 
specimen, will now be considered, first examining 
how the pattern variability that occurs under low- 
absorption conditions is generated [already shown in 
Figs. 4 (a ) - (d) ] .  For this purpose it is helpful to refer 
to the plots in Fig. 5 of the basic 'sum' and 'difference' 
functions whose product forms the fringe pattern in 
the low-absorption case, (8), when the slowly varying 
amplitude factors ( l - p 2 )  -1/4 a n d  (1--p'2) -1/4 are 
both approximated by unity. In Fig. 5 the difference 
function I -  is sin 2 ½(Pr--P'r), the sum function I ÷ is 
simplified to sin 2 ½(Pr+p'r), pe = 0"25 and the plots 
are truncated on the right-hand side at p = 0.45 (i.e. 
p ' =  0.95) to exclude rapid oscillations unlikely to be 
resolved experimentally. The function I -  (Fig. 5a), 
which represents the high-absorption Borrmann- 
Lehmann fringe pattern, is always anchored to the 
edge E (p = - 0 . 2 5 )  with a minimum at that point. 
The four sum functions in Figs. 5(b)-(e)  represent 
values of ½(Pr+P'r) at  E increasing in steps of zr/4. 
Figs. 6-9 show the full calculations of Borrmann- 

(a) 

(b) , ^ . A l ll,II 

I . , ,,,,.,it 

(d) 

- 0 . 2 5  p 0-5 

Fig. 6. Variation of Borrmann-Lehmann fringe patterns with 
increasing absorption. Type II (positive) setting, t/~g = 60, pe = 
0.25, abscissa range -0 .25-<p <- 0.5, corresponding to range 
from E to R' on exit surface. Case when Pr and p'r = 57.75~- at 
E, cf. Fig. 5(b). (a)- (d)  t/~g = 0, 0.104, 0.208 and 0.417, respec- 
tively. (c) corresponds to diamond with A = 0.15 nm, t = 1 mm, 
cr polarization and e = 0.7. In (d), ticks show positions of first 
14 fringe maxima in high-absorption limit. 
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<a) II 

(b) 

. , I , , i  Iltl[ 

II (c) 

<d) I 

-0 .25 p 0"5 

Fig. 7. (a)-(d) As Fig. 6, but with p, and p~ = 58.0zr at E. Compare 
with Fig. 5(c). 

Lehmann fringe patterns for A =0.15 nm, PE =0.25, 
with t/¢g values corresponding to the four phases 
of I ÷ at E in Figs. 5(b)-(e), and with ¢~ spanning 
the range from zero to high absorption. All the 
Borrmann-Lehmann fringe domain is included 
( -0 .25-<p-0-5) ,  but not the normal Pendell6sung 
domain at higher p, i.e. 0 .5 -<p-1 .  In each of Figs. 
6-9 the plots (a) to (d) are for ~:~ =oo, 9.6, 4.8 and 

i 2.4 mm, respectively. The value Cg =4.8 mm applies 
to diamond at A = 0.15 nm with e = 0.7. The abscissa 
ticks show positions of the first fourteen fringe 
maxima in the high-absorption limit for each value 
of the parameter t/~g assumed. To understand the 
fringe profiles produced at the lower absorptions, 
refer to the corresponding product of I ÷ and I -  in 
Fig. 5. Thus, for example, Fig. 6(a) is seen as the 
product of the curves of Fig. 5(a) and Fig. 5(b), 
disregarding a very small fractional difference in t/¢g 
between Figs. 5(a) and 6(a) and the omission of 
the amplitude factors (1 _ p 2 ) - 1 / 4  a n d  (1 _ p , 2 ) - U 4  in 
Fig. 5. 

The transformation of the profile Ira. by absorption 
is clearly exposed if in addition to approximating 
(1-p2)  -1/4 and (1-p '2)  -1/4 by unity a further 
approximation is made by assuming that the equality 
of pi and p[ existing at E also extends throughout 
the Borrmann-Lehmann fringe region of interest. 
Then, introducing /~i = ½(Pi + P~) and dividing by 

(b) 

(c/ 

(d) 

-0"2 5 0"5 
P 

Fig. 8. (a)-(d) As Fig. 6, but with pr and p',=58.25~r at E. 
Compare with Fig. 5(d). 

(a) 

iI 

(c) 

(d) 1 

-0"25 p 0"5 

Fig. 9. (a)-(d) As Fig. 6, but with Pr and p'~ = 58.5zr at E. Compare 
with Fig. 5(e). 
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cosh fii, (15) becomes 
L L  Dg - cos (Pr - rr/4) + i tanh fii sin (pr - 7r/4), 

(18) 

with a correspondingly simplified expression for 
DLBL Inserting these expressions in (17b) gives g • 

IBL = [COS (pr-- 7r/4)--COS (p',-- 7r/4)] 2 

+ t anh  2 fi,[sin ( p , -  ~ - /4 ) -  sin (p ' r -Tr /4 )]  2 

which transforms to 

I w  = 4 sin 2 ½(Pr- p'r) [sin 2 ½( Pr + P',-- 7r/2) 

X (1 - t a n h  2 fii) + t anh  2 t5~]. (19) 

Equation (19) shows that under the approximations 
adopted the fringe profile for any value of absorption 
is an appropriately weighted mean of the zero-absorp- 
tion profile (8) and the high-absorption profile (10). 

6. Strained crystals 

This final section addresses the question why large 
discrepancies between calculated and observed 
Borrmann-Lehmann fringe spacings may be observed 
in nearly perfect crystals whose Pendell6sung patterns 
give no indication of significant perturbation by strain 
gradients. It seeks to identify factors peculiar to the 
diffraction geometry of Borrmann-Lehmann interfer- 
ence that confer great sensitivity to lattice distortion. 
Dynamical X-ray diffraction theories developed for 
strained crystals can be differentiated into those 
attacking from a wave-optical or from a ray-optical 
viewpoint. In the former category are the theories of 
Takagi (1962, 1969) and Taupin (1964), and in the 
latter those of Penning & Polder (1961), Kambe (1965, 
1968), Bonse (1964) and Kato (1963, 1964a, b). The 
ray theories examine crystals sufficiently weakly 
distorted to permit a local reciprocal lattice and 
dispersion surface to be defined everywhere in the 
energy-flow triangle. Identification of local wave vec- 
tors and Poynting vectors is then possible. These 
vectors do not appear explicitly in the Takagi-Taupin 
theory. Clearly, the present problems, which directly 
involve ray trajectories, fall naturally within the scope 

.of ray theories. Such theories should provide a 
physical picture of the process of modification of 
Borrmann-Lehmann interference induced by lattice 
distortion. However, it is possible to develop a ray 
theory without explicit expression of phase integrals. 
This is what Penning & Polder did; and as long as 
only the tracing of trajectories and the calculation of 
PendellSsung-averaged intensities are the objects of 
investigation no loss is felt. When dealing with inter- 
ference phenomena, on the other hand, phase infor- 
mation is necessary. Kato's Eikonal theory is directly 
informative in this respect. The results of this theory 
will be applied here, with notation as in Kato (1974). 

The function of strain gradients that measures 
departure from perfect-crystal conditions for the 
Bragg reflection g is likened by Kato to a 'force', f, 
and is [Kato, 1974, equation (5-138a)] 

f ( x ,  z ) =  7r cot 0,~z2[~,.u(r)] 

02 ] 
- t a n  0B~x2[f~. u(r)] (20a) 

= ~ Lcot 

i m  c~2 Ug a2 Ug ] 
7r 0n--~-z2 - tan 0B _----7|. (20b) 

Ox-1 

Here u(r) is the displacement vector referred to the 
perfect-crystal lattice, u ( r ) = r - r  (perfect); ~, is the 
reciprocal-lattice vector in the perfect crystal, d = 
I~l-~; and Ug is the component of u(r) parallel to ~. 
The rectangular axes x and z are taken in the plane 
of incidence, as shown in Fig. 10, with origin at O 
and x parallel to ~,. From his Eikonal theory Kato 
derives the ray equation 

dz ( l - p 2 )  1/2 = +  ~ g t a n O B f ( x , z )  (21) 

with positive and negative signs applying to branch 
(1) and branch (2) waves, respectively. Introducing 
the deviation parameter w = +p(1 _p2)-]/2,  and sub- 
stituting for f from (20b) gives 

dw [a2Ug _ 192Ugq / [  d \  
dz - [.--~-z 2 - t a n 2  0 ° W / / / ~ )  ~22~) 

in which no + sign is needed. Recall that 2d/¢g is 
the full width at half-maximum intensity of the Bragg 
reflection g in the symmetrical Laue case, zero absorp- 
tion, and is a measure of insensitivity to 'force'. 
Henceforth the quotient on the right-hand side of 
(22a) will be denoted by A(x ,  z) = rr-l ~g tan OBf(x, z) 
and the equation becomes simply 

d w / d z  = A(x ,  z). (22b) 

0~_0" x,XFX~) OQ ---- \~--( //J 
\ 

\ 

z,Z 

B 
! 

Fig. 10. Curved ray trajectories in the distorted crystal. Type I, 
negative setting, cf. Fig. 1 (a). Direction of curvature corresponds 
to f positive and branch (1) rays. [Branch (2) rays not shown]. 
Drawn for tan 0s= 1 to make x /X  = z/Z. On BE, z= t and 
Z = Za = At. At Q, tangent to ray (1) is QOo, and tangent to 
ray (2)is QO' o. 
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How A(x, z) varies in the specimen is unknown. The 
assumption that A is a constant throughout the 
energy-flow triangle is hardly realistic, especially in 
the important corner region near E where two free 
surfaces FE and BE meet. Strain gradients in the 
specimen bulk arise from variations of lattice param- 
eter normal to the {111} growth surfaces, and these 
surfaces outcrop obliquely at the {100} polished free 
surfaces. However, in order to proceed, constant 
A(x, z) will now be assumed. Integration of (22b) 
then gives 

w - we = Az, (23) 

where we is the deviation parameter of the ray con- 
cerned at z = 0, on the entrance surface. Equations 
(22b) and (23) show that wave points on both 
branches of the dispersion surface migrate at constant 
rate through the Brillouin zone boundary with in- 
creasing z. Since the rays are normal to the dispersion 
surfaces, which are hyperbolic, the rays themselves 
follow hyperbolic trajectories, which are derivable as 
follows. Making use of the relation dx = tan OBp dz 
and confining attention to branch (1) rays for which 
p = +w(1 + w2) -1/2, integration of (23) yields 

A cot 0Bx=[1 +(Az+ We)211/2--(1 q- W2e) 1/2. (24) 

Re-arrangement of (24) produces equation (5-155b) 
of Kato (1974), which is 

(X + Xo)2- (Z + Z0) 2= 1, (25) 

where X = A cot OBX, Z = Az, Xo = (1 + w2) 1/2 and 
Z0 = we. Properties of the family of hyperbolic trajec- 
tories represented by (25) are described by Kato 
(1964b, 1974). 

The implications of curved trajectories for 
Borrmann-Lehmann interference can be visualized 
from Fig. 10. The first question to be answered in 
these circumstances is how to satisfy the boundary 
conditions at Q with an imaginary source on the left 
of FE. The source should provide a wave of amplitude 
equal in magnitude to that of the G wave on the right 
of FE but with reversed x component of Poynting 
vector so that pQ(2)=--pQ(1), signifying by Po the 
local values of p at Q for rays (1) and (2). If the 
crystal were perfect Po(1) would be the ray parameter 
in an energy-flow triangle with apex at O o lying on 
the tangent to the ray at Q, i.e. with FOQ/FQ= 
tan OapQ(1). Similarly, pQ(2) is the ray parameter in 
a perfect-crystal energy-flow triangle with apex at 
O~, with FO' o = FOQ. The amplitude of the actual 
G wave within the crystal at Q will differ from that 
in the perfect-crystal case, so the strength of the 
imaginary source at O~ should also differ from that 
at O. With small amounts of ray bending, as at present 
considered, such amplitude differences will be small 
unless anomalous transmission is very important, and 
these differences will be disregarded here. Concerning 

the positions of OQ and O~, note that rays become 
increasingly rigid as they approach the directions OR 
and OT. Hence for rays reflected at P there will be 
no image source displacement. The displacement 
O 'O~ increases steadily as Q moves down to E where 
it has its maximum value, which is calculated below. 

To find the magnitudes of the wavevectors that 
interfere at W, the local values of p on EB (denoted 
by p~) for rays such as (2) and (3) are required. To 
illuminate such calculation, consider the special ray 
(not drawn in Fig. 10) that reaches EB at L, the 
mid-point of RT. By symmetry, pa(L)=-Pc on the 
hyperbola concerned and the centre of this hyperbola 
will lie on the line Z = ½Z~. Now on any hyperbola 
belonging to the family given by (25), p = d X / d Z  = 
(Z + Zo)/(X + Xo), and the coordinates of the hyper- 
bola centre are X = -X0 ,  Z = -Z0 ,  with X~+Z~= 1. 
So for the hyperbola of the branch (1) ray passing 
through O and L, Xo=½(4+Z]) U2, and 

Po(L) = Z,,(4 + Z]) -'/2. (26) 

When Za becomes large, pa(L) tends to unity, as 
expected. When Z 2 ,e 1, p~(L) =½Za, as could also be 
derived from (23). Only a rough estimate can be made 
concerning a likely value of Za in the specimen 
studied. The factor by which Pendellrsung fringe 
spacings are contracted in a distorted crystal with 
constant f is given by equation (5-165b) of Kato 
(1974), and is [1 + (1/24)Z 2] at the mid-point of RT. 
Experiments involving Pendelliisung fringe spacing 
measurements in a region about 1 mm distant from 
FE suggested that the condition (1/24)Z~ < 0.01 was 
probably satisfied, making Z2a--<0"25. Call Ap~ the 
deviation of p from the perfect-crystal value at any 
point on EB. Then, provided that the conditions Z~ ,~ 

2 1 and We ~ 1 are both satisfied, it is easily shown that 
zip,, can be taken as constant, approximately ½Z~ for 
branch (1) and -½Z~ for branch (2) rays. Note that 
in the type I (negative setting) illustrated in Fig. 10, 
a ray becomes tangent to FE at E when zipa = - P E .  
Here Pe is the geometric constant a/ t  tan On, and 
equals PE, the perfect-crystal value of p at E, as used 
in ( l i b )  of § 3. Furthermore, no ray belonging to that 
branch of the dispersion surface for which ziPa < -PE 
can reach E. 

The effect of image-source-point shift on fringe 
spacings can be calculated easily in the case of intra- 
branch interference by applying ( l i b )  with the per- 
fect-crystal pE replaced by Pe + Ap~, or can be found 
directly by adding to the distance a the image-source 
shift, which is ½Zat tan 08 =½At2tan OB. [Addition 
applies in the setting of Fig. 10, and branch (1) rays.] 
The fringe spacing given by (13) is changed to 

zia=~g(t/a)tan 2 0B/[I±(ZJ2PE)] .  (27) 

As just stated, the positive sign applies to branch (1) 
rays and the type I setting. Sign change accompanies 
change to type II setting or change of branch. Since 
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typical values of Pn are in the range 0.1 to 0.4, and 
Z~ may have a magnitude of several tenths in a crystal 
considered perfect by standard topographic criteria, 
large relative changes in A, are understandable. In 
the low-absorption case the opposite effects on branch 
(1) and branch (2) waves would roughly cancel out 
when Izol ~ 2PE. When this condition is not satisfied, 
it can be expected that the smaller of the two period- 
icities will stand out on topographs, since it will show 
more fringes in a given distance from E along EB. 
Quite possibly IZ~I/2P~ may exceed unity. Then only 
rays belonging to the dispersion surface branch that 
increases the denominator on the right-hand side of 
(27) can produce fringes, as follows from the tangency 
condition pointed out above. Statistically, therefore, 
observed A,, values less than theoretical might be 
expected to be found more frequently than values 
greater, in experiments on crystals containing dis- 
tortion, just as a geometrical consequence of ray 
curvature. 

In his Eikonal theory, Kato identified a kinetic term 
T and a potential term N in the phase integrals S 
taken along ray trajectories in distorted crystals 
[Kato, 1974, equations (5-131), (5-134)]. In pa~ 
ticular, he calculated the contributions of T and N 
to S (~)- S (2), the phase difference between branch (1) 
and branch (2) waves, changes in which produced 
the observed contraction of Pendellrsung fringe 
spacings in distorted crystals (Kato, 1964b, 1974; 
Kato & Ando, 1966). Present concern is with the 
contributions of T and N to S - S', S being the phase 
integral along the path OW, ray (3), and S' that along 
the path OQW, ray (1)+(2) .  [In the perfect-crystal 
case S - S '  is simply the fight-hand side of (11).] 
Discussion will be restricted to the conditions Z 2 ~ 1, 
P~ ,~ 1, and only fringes close to E will be considered, 
i.e. b small, B2,~l.  Again, confining attention to 
intrabranch interference, recall from (12a) and (13) 
that in perfect crystals the fringe reciprocal spacing 
A $1 is given by 

a - d ' = d [ ( s - s ' ) / 2 7 r ] = ( ~ g  tan OB)-'P~. (28) 

The replacement of PE by PE + APa in the distorted- 
crystal case has already been established. Here the 
need for additional terms on the right-hand side of 
(28) is investigated. First consider T. In the perfect 
crystal, integrating along a straight ray between O 
and W gives [for branch (1)] T (perfect)= 
zrtsCgl(1_ O.w) , 2  with 0- = L W / L R ,  as defined in § 3. 
Integration along the curved ray (3) gives T (distor- 
ted) = 7rtsCgl[1- 0 "2 -  (1/24)Z~]. Since the change in 
T does not depend on o'w, S -  S' is unaffected. Note 
a significant difference compared with Pendellrsung 
interference, where change in T due to distortion 
changes S (1) - S (2) by the factor [1 - (1/24)Z~] at the 
centre of the pattern, tr = O. 

Table 1. Signs to be attached to the potential term and 
to the image-source-shift term in equation (30) under 

various experimental conditions 

A p o s i t i v e  s i g n  ac t s  to  d e c r e a s e  t he  B o r r m a n n - L e h m a n n  f r i n g e  

s p a c i n g .  

S e t t i n g  T y p e  I T y p e  I I  

S i g n  o f f  + - + - 

,l 'Branch (1) + - - + 
Potential [ B r a n c h  (2) + - - + 

Image sourcel .J 'Branch (1) + - - + 
shift J [ B r a n c h  (2) - + + - 

Consider the potential term ~/. Note first that this 
term is zero in the perfect crystal. Calling dl a line 
element of the trajectory along which the integration 
giving K/is  taken, it follows from Kato's equations 
(5-134) and (5-138a) that curl (d.K//dl)=f.  Hence, 
as pointed out by Kato (1974, p. 410), application 
of Stokes's theorem enables the difference in line 
integrals, N -  N' ,  to be converted to the area integral 

f dx dz, or simply to f ~ dx dz when f is constant. 
In the present problem S dx dz is the area enclosed 
by rays O W  and OQW and has a positive value since 
the line integral OWQO is taken clockwise. Straight 
rays would give ~ dx dz = tab/(a + b), or tb for small 
b. The curved rays have curvature in the same sense, 
and so similar in magnitude when b is small that it 
is quite adequate to set ~ dx dz = tb four them also. 
Thus N -  N '  =fib and 

~b[ (_N-N ' ) /2z r ]=( sCgtan  O~)-l(½Za). (29) 

This contribution to d(S - S')/2~r db matches in mag- 
nitude that produced by image-source shift, discussed 
above. Note the important difference from the latter 
in that the sign of N - N '  is the same for rays 
belonging to both branches (1) and (2). [This can be 
understood by recognizing that the integral N is just 
a geometrical result of the path taken through the 
field u(r).] It is also important to note that the contri- 
bution to S -  S' depends upon the first power of Za. 
This contrasts with the corresponding contribution 
of j ~ r ( l ) _ _ ] Q ( 2 )  t o  S(1) -S  (2) in the distorted-crystal 
Pendell6sung pattern, when it is proportional to Z2; 
and at the centre of the pattern the contribution 
]Q(~) _ ~(2) increases the perfect-crystal value of S (1) - 
S(2) by the factor [ l+(1/12)Z2a].  For Borrmann- 
Lehmann fringes, in the case of the type I setting and 
branch (1) rays, the fringe spacing given by (13) is 
now modified to 

A a = ~g(t/a) tan 2 0~[1 + ( Z a / 2 P e ) + ( Z J 2 P ~ ) ]  -~ 
(30) 

when the contributions of both image-source shift 
and N - N '  are included on the right-hand side. Table 
1 sets out the signs that should be assigned to the two 
terms of magnitude Z~/2P~ in this equation under 
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the various combinations of experimental conditions 
that may be encountered. 

The foregoing analysis has uncovered diffraction- 
theoretical reasons to account for the observations of 
large relative changes of Borrmann-Lehmann fringe 
spacings produced by strain gradients too small to 
affect Pendellrsung spacings noticeably in a conven- 
tional topograph. In all but the most perfect crystals, 
Za/2Pz is unlikely to be small compared with unity. 
For example, if f arose from a uniform dilatation 
gradient normal to the Bragg planes, then a gradient 
as low as 10-6mm -1 would make Za-~0.1 when 
diffraction parameters similar to those operating in 
the experiments illustrated in § 4 applied. Then with 
small values of PE, about 0.1 say, changes in fringe 
spacing of order 100% would be produced. This 
analysis justifies the suggestion previously made 
(Lang et al., 1986) that experiments of the Borrmann- 
Lehmann interference type deserve serious consider- 
ation for development and application in crystal 
assessment work. The origin of the high sensitivity 
may be qualitatively pictured by an analogy with 
X-ray interferometry. It can be said that the action 
of combining rays OW and OQW, which take quite 
different paths through the distorted crystal, turns the 
specimen into its own interferometer. 
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Abstract 

In regard to X-ray diffraction, Langmuir-Blodgett 
(LB) films consisting of lipid bilayers represent a 
'one-dimensional crystal' with a very small number 
of unit cells in the direction of stacking. Such bounded 
systems yield X-ray diffraction diagrams which, in 
certain respects, contain more information than those 
of the conventional effectively infinite single crystals. 

0108-7673/90/030227-07503.00 

This additional information consists of the profiles 
of the broadened reflections and their dislocation 
from the reciprocal-lattice points. These profiles are 
specific for each different structure and hence enable 
the direct calculation of unambiguous electron- 
density distributions from a single set of intensity 
data. At first, the Q function (the generalized Patter- 
son function), i.e. the distance statistics of the struc- 
ture sought after is calculated from the intensity data. 
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